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PREFACE.

THE notation now so universally used for the sine, cosine,
&c. of an angle, although in some respects inconvenient, in-
asmuch a8 it requires several symbols to designate a quan-
tity where one might be sufficient, is yet so admirablyA adapt-
ed to the wants of Analysis, that it has forced its way into
every department of the higher Mathematics. It owes this
preference, partly to the power it gives of combining the func-
tions of different angles, or of multiple angles; but princi-
pally to its enabling us to avoid the use of the radical sign of
the second degree ; inasmuch as, if the sine of an angle were
represented by one symbol, its cosine would be an irrational
function of that symbol.

It would seem strange, then, that this notation has never
yet been applied to the Diophantine Analysis, the avowed
object of which is to render rational algebraic expressions of
certain forms. Perhaps one reason for this may be, that,
notwithstanding the attention which has been paid to this
branch of Analysis by many mathematicians of the highest
rank, the object has been confined to the finding of numbers
that may fulfil certain conditions, rather than algebraic forms,
to fulfil those conditions. The methods of solution have been
more or less tentative in their character, and could therefore



iv PREFACE.

scarcely be expected to produce results to be compare& with
the lofty objects of modern Analysis.

In the few pages which follow, I have attempted not only
to apply the notation of Trigonometry to several well known
Indeterminate Problems of the second degree, but also to in-
troduce somewhat more of system into the method of investi-
gation, and more of generality into the results of the Ana.
lysis than has been yet attained. How far I have succeeded,
must be left to the judgment of the reader.

In the two last Problems of the second Chapter, I have
applied the Analysis to inquiries which would scarcely be
attempted without some better method of notation than that
hitherto used.

College Point, N. Y.
March 27th, 1848.



ANGULAR ANALYSIS

APPLIED TO

INDETERMINATE EQUATIONS

OF THE SECOND DEGREE.

h CHAPTER 1I.
NOTATION.

THrE six trigonometrical functions of an angle a, or of an
arc which measures that angle in' a circle whose radius is
unity, are related to each .other as in the following equa-
tions:

sin A

gin 2A 4-cos®a =1 tan A = ——
+ ? cosa’

. sinAcosec A=cosASecCA==tanAcolA=1.

. If, then, the sine and cosine of the angle can be expressed
in rational numbers, all the other functions can be so like-
wise. To do this it is only necessary to take

2mn m2—n?
ot e COSA=m——2+”2~,

1‘

sinA =
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which satisfy the first of the above equations, m and # being
any rational numbers whatever; then

tan A 2mn ta m2—n2

an A= cotA =
m2—n2’ 2mn '
m24n? man?
coseca="1" seca=" 1%
2mn m2—n?

These six equations may all be included in the symbolical
form

A=¢(1:-), N ¢))

or, in its inverse form

e . - (@)

13 . .
n which, A is any angle or arc,

¢ is a functional characteristic,
m . .
8 the root of the function.

For example, when we say that

A= 9’(2))
we mean that
2.2 2312

“22+12 ='§', COBA=-2T.'$-‘E,&C.

ProsLEM 1. To find the voot of a function, in terms of the
angle. ’

Solution. Take the equation

m3 —n?

———5=C084A
m3 +n? i
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and solve it for %, we shall find

m? 14-cosa 2
2T 1—cosa % LR

m

o= cot =¢7a), . . (8

80 that, the root of a ﬁm:u;on ts the cotangent of half the
angle.

Cor. While A = ) (%) varies from 0° to 180°,
m .
cot A = o varies from o to 0,

passing through unity when o =90°;
thus: ’

0°=¢(}), 90°=¢(1), 180°=¢(0), &c.
hence also;

n . o™ °S 0°:
whenﬂ)l, cp(“)<90 >0°;
m fud ° °
when — < 1> 0, w(”) > 90° < 180°.
. . m .
Again, whilea = w(;) varies from 180° to 360°,

m_
cotir= -, varies from 0 to — o,

passing through negative unity when A =270°; thus:

270° = p(—1), 360° = @(=}), &c.;



hence also:
m m o o.
when Y <0>—1, tp(—”—) > 180° < 270°;

. LI " o 0
when > < —1 ¢(:)> 270° < 360°,
&e. &ec.

Prosrem II. Having given the roots of two functions, to
€ind the root of their sum.

Solution. Let A+4+B=cC;

wit  a=o(2) n=o(Z). c=o(L),
() +e()=+(3)

But we have
cotdacotip—1

cot-}c = cot i(A + B) == m-n—,
n2__
or r_n' g - mp—ng
’ t m.p mg+np’
" g

and the above equation becomes

(D+e(D)=o(FEH - - @

Example 1. 90° +¢(%) =¢(1)+ 'P(%)=‘P(,";::_:)i %)

thus: 90°4 @(2) =),

90°+ ¢(}) =o(})
&ec.
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For example :
29(2)=9(%), 30()=0(x) 49(2)=o(— ), &c.

L 20(3) =0($a)r 30(3) = 9(—F)r 40(3) = o(— ), &e.

ProsrLem III. Having given the roots of two functions, to
“find the root of their difference.

Solution. Write, in equation (4), —m for m, and by (7)

#(8) —o()=e)+o(=7)=(22 12D v

Example 1. 90°—¢(—§)=¢(1)—¢(—:i)=¢(:i:). (12)

“Thus, ¢(2) +9(3)=0(4) +#(3)=9(5) +(3) = &c.=90°.
Examplo 2. 1so°—¢(%)=¢(0)—¢(%)=¢(%). (13)
“Thus, 9(2)+9(1) =9(3) +#(3) = 9(4) +9(}) = e.=180°.

on o (2)-o )+ (D ().

or (—)+<p( 2 )+¢(mq+"” )=180°, . (14),
:and therefore

o) o(2) (i

wepresent the three angles of a plane triangle, the functions of
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each of which are expressed in rational numbers. For ex-
ample,

9)(2)! 9’(%): w('}); _
9(3), ®(4), o(v5); &e.

are the angles of a plane triangle, and their trigonometrical
_functions can all be expressed in rational numbers.

Cor. 2. 90° —q)(%) —9 %) =g(l)— m§+:;

s = i

o) o) o HEEBEED o

Thus  ¢(2) +9(3) + ¢(— ) = 9(3) + #(4) + 9(§) = 90°.

Scholium. The results of this Chapter shew that

- 19 If the cotangent or tangent of half an angle is ex-
pressed by a rational number, all the trigonometrical fune-
tions of that angle will be expressed by rational numbers.

2°. If the trigonometrical functions of any angle can be
expressed in rational numbers, the functions of any multiple
of that angle can be also expressed in rational numbers.

8°. If the trigonometrical functions of any number of
angles can be expressed in ratienal numbers, the funetions of
the angles, produced by adding or subtracting these angles in
any manner whatever, can also be expressed in rational
numbers. :
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CHAPTER 1II.

APPLICATION OF THE PRECEDING NOTATION TO INDETE RMINATE
EQUATIONS OF THE SECOND DEGREE.

ProerLEm I. To divide a given square number (a?) into
two other square numbers.

Solution. The equation to be solved is
z? +y? =a?,
so that if we take
Z==a8in A, Y=acosi;
we shall have
z2 4 y’.= a2(sin 2A 4 cos 2A)=a?;

and A may be any angle whose functions are rational num-

bers.
If a be itself the sum of two squares ; or

a=m2 +4n2,
by taking A=¢ (%), we shall find integral values for  and
y. For example, if
a=65=82-1-12=724-42=(22112).13=(324-22).5;
we may take for A the several values

#(2), 9’(%)' (1) 4})(8);
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and we shall find for z the several values
52, 60, 56, 16;
and the corresponding values of y are
39, 25, 33, 63.
Thus 652 = 522 4 392 = 602 + 252 = 562 4 832 = 162 4 632.

Cor. The given equation may be written
a? —z2=1y3,
which may serve to divide a given square number (y2?) into
the difference of two squares. By solving the above equa-
tions for @ and z we find
G =Y 86C A, r=asina=ytana;
in fact, \
a? —z2 = y?(sec 2A —tan 24) =3,

It must be recollected that, since A may have any value, we
can write its complement instead of it; that is we may take,
as well,

@ =7 cosec A, Z =1y cota.
Example. If we take A = ¢(y), we have

a=3}(y*+1) z=3}(y*—1).

Proerzm II. To divide the sum of two given squares
(a? 4 53) into two other square numbers.

Solution. The equation to be solved is

23 4 y? = a2 4 32,
Then we may take

Z==acos A+ bsina, y=asinAa—bcosa;
2



14

for then,
22 4-y2=a?(cos 2A + sin 2a) +}- ab(sin 24 — sin 2a)
+ 52(sin 24 4 cos 2A)=a2 452,
Examp].e. If A =¢(2), then
z=1(3a+ 48), y=1}(4a— 3b).

Cor. 1. If a =2, or the equation is
z? 4 y? =2a2,
the above values become
Z = a(cos A 4 sin A) = av2 cos (o — 45°),
y =a(sin A— cosA) = av2 sin (A — 45°) ;
and z, ¥, @ are the roots of three square numbers in arithmeti-
cal progression, a? being the mean.

If a =¢(—’::5), these roots will be of the usual form,

z=m342mn—n2, a=m? + n?, y=—m2 4 2mn 4 n3.

Cor. 2. If the given equation be written in the form
22 —a? =32 —y2,

it will serve to divide the difference of two given squares into
the difference of two other squares, by solving the preceding
equations for £ and a ; viz.

=5 cosec A + y cot A, a=>bcotA 4 ycosec a;
in fact ‘
23—a?=b3(cosec2a—cot24)+ 2by(cot A cosec A—cot A cosecA)

+ y2(cot 2A — cosec 24) = 32— 43,
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Cor. 3. In all these cases we can write 90° + a4, or 180° £ a
for A, so that

(@acosA £ bsina)2+4 (asin A Fbcosa)? =a24 32,
$av2cos(45° £A)} + $av2sin(45°£A)}2=2a2,

(bseca+ytana)? —(btana +yseca)2=52—y3,

ProsrLem III. To find two square numbers, whose diffe-
rence shall be equal to a given number (a = &c).

Solution. The equation to be solved is
22 — y? =a= b,
. Yy
and will be satisfied by taking :
x4+ y=bcotda, zx—y=ctana.

Then, by addition and subtraction,

b cos?23a+4csin23a
sin A

z = §(bcot a4-ctan fa)=

= #(b+4c) coseca+3(b—c)cota,

b cos?23a —csin23a

y = §(b cotJa—ctana)= A

= #(b —c) cosec A+3(d+c) cot A.
Example. Leta=15=5. 3, we may have
z=8 cosec A+47 cota, y="cosec A+8cota;

or, x=4cosecA+} cota, y= cosec A+4 cot A,
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Thus, if A=90°, =8 or 4, y=T7o0rl,
if A=9(2), =% or3?®, y=%LorYy; &ec.
and 16=47—12=87— 73 =()1—( 7 )?=(9)*—(%2)", &e.
Cor. If a has the form %(¢2 — u2?), or the given equation is
22 —y? = k(12 —u?),

we may take b = k(¢4 u), c=t—u; and the above ya-
lues become

2 8in A = (% cos 2JA + sin 2Ja)t - (k cos 23A —sin 2Ja)w,
ysin A= (kcos 23a — sin 23A)¢ - (k cos 23A < sin 2}A)u.
Or, we may take & =1¢ + w,¢c = k(t — ) ; then ¢
zsin A =(cos 2} + & sin 2}A)t + (cos 33A — k sin 24a)y,
ysinA =(cos 23A —ksin 23A)t 4 (cos23a 4+ % sin 23,
Thus if £ = 2, we shall have, to solve the equation
z? —y? = 22 —u?), |
the values of z and y,
z8in A = (1 4 cos 23A) 4 (3 cos 234 — 1)y,
y8in A = (3cos23a—1)t 4 (1 4 cos 2}a)u;
or, zsin A = (1 4 sin 2}a)¢ 4 (1 — 3sin 23A)w,
ysin A = (1—3sin23a)t 4 (1 4 sin33a)u.
ProsrLem IV. To solve the equation, in rational numbers,
z? + azy + by? = 22,

in which a and & are given numbers.
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Solution. This equation is the same as
2? — 22 = azy + by? = y(az + by);
and we may take, a3 in Problem IIL,,
z+z=1ycot }a,

z—z = (ax + by)tan }A;

and eliminating z,
2z = y(cot o — btan Jao) — az tan 4,
or, (sin A + asin 23a)z = (cos 23a— b sin 24A)y.
So that we can make
z = ¢(cos 2}a — b sin 2}a),
y=t(sin A < asin 2}a),
z=1¢(cos 23a + i—d sin A + b sin }A);
in which ¢ is any rational number whatever. Thus, if we
take A = qi(znn—), and t = m? 4 n3, ;ave have
z = m? — bn3,
y = 2mn + an?,
z=m? 4 amn 4 bn3.
Example 1. Leta =1, 5=1; theequationis
z? +zy + y? =22,
and it is solved by taking
z==tcosa, y=¢(sina+sin2}a), z=1¢(1+ }sina).

Thus,if A=¢(2), t=5; wehavez =3, y =5, z=1.
o%
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Example 2. Let a = 0, the equation is
72 4 by? = 27;
and it is solved by taking
z=1t(cos 232 —0bsin2§a), y=1¢sina, 2 =1?(cos 23A 4 bsin 23a).
ProBrEm V., To solve the two equations
z? 4 az = b2,
2 —azr =c?;
. a being a given number.
Solution. By adding the given equations we find
202 = b2 4 ¢2;
and therefore, by Prob. II,, Cor. 1,
b=zv28in(45°+4), c=xzv2cos(45°+a).
By subtracting the given equations, we have
2az = b2 — ¢? = 2x2§sin 2(45° + o) — cos 2(45° 4 a)}
=222 cos (90° + 24) = 222 sin 24,

a
T=— .
sin 2A

and

Example 1. If a is of the form 4mn(m? — n?), we may
take A= tp(-::i), and then
z = (m? 4 n?)32,
Example 2. If @ =2,and we take A =¢(2), then
z = §5.
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ProsrEM VI. To find three numbers in arithmetical pro-
gression, such that the sums of every two of them may be
square numbers.

Solution. The equations to be solved are
z 4 y=a?, y+z=c?,
z 4 2z =102, z42=2y.
By eliminating z, y, 2, we find
a? 4 ¢c2 =252,
and therefore, by Prob. II., Cor. 1,
a = b(sin A 4 cos A,) ¢ = b(sin A —cos A) ;

hence we have _
@ = 3(2a2 — b2) = $b2(1 4 2 5in 24),

y=4b%
z=§(2¢2 — b2?) = 3b3(1 — 2 8in 24).
To render these results positive, it is necessary that
sin2a < &, 24 < 30°
cota=¢ 1(A) > 7,604......

Example. If A = ¢(9), 2a = ¢(%?), sin 24 = {39%, and
taking & = 82, we have

z=6242, y=23362, z=482:

ProsrLEM. VII. To find four numbers, such that the sum
of every two of them may be a square number.



20

:Solution. The equations to be solved are

v+ z=a?, z 4y =d?,
v+ y=2053, T+ z=e2,
v+z=c?, y+z=12;
-and they give
| 20= a4 bt —ds, 2z == a® —b° 4 d2,
2y=—a?+ b + d?, Rz=0c? 4+ f* — b3,

v+zty+z=a2+f3=524e2=c?+4d?,
‘These last equations may be solved by Prob. II., and give
e=dcosA +4csina, b=dsinA—ccosAa,
S =dcosB + csins, a =d sin B— ¢ cos B.
By substitution we find
2v=d?(sin? A—cos? B)—cd(sin 24}-5in 2B) 4¢2(cos? A+ cos?B),
22=d?(sin? B+ cos?A)4-cd(sin 2A—sin 28) }-c* (cos? B—cos34A),
2y==d? (sin 2 A} c08? B)—cd(sin 2A—sin 2B) 4-¢? (cos? A—cos?B),
2z=d?*(cos? B—sin?A)+-cd(sin 2a+-5in 2B) +-c? (sin 2a+-sin ’n);

These values must contain every possible solution of the
question, but in order to have positive numbers, it is neces-
sary that we should have, not only

g ‘—jcos (A438)+sin(a+38) } 2 < 1+(_:28(A+B)>1_cos(A+n)_

cos(A—B) cos(A—B)’

but also, supposing A > B,

§ Zsin (a-+8)+cos(a +3) gs <1480 (atn) ) sin(atn)

sin (A—B) sin(o—s)’
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If we take the particular case B = 90° — a, we have
2v = ¢2 — 2¢d sin 2A 2z = 2d2 cos 24 — c2 cos 24,
2y =2d2?sin3a +c2 cos 2A, 2z=c2 4 2¢cd sin2a,

and the limits for positive numbers reduce to

Z > 2sin2 and(i)a< 1 4 sec 24 > 1 —sec 2a.
d ’ \d
Example. If o = ¢(§), B =90° — a, the limits become

%>2x%}%<4,64...;

by taking ¢ = 58, d == 29, the numbers will be

2, 359, 482, 3362.

In the manuscripts bequeathed to me by my lamented
friend, William Lenhart, Esq., York, Penn., I find the follow-
ing numbers for this question,

18, 882, 2482, 4743;

which are probably smaller than any previously found. They
may be obtained from this solution by putting

d=175, ¢=50, a=09(}), .B=¢(2)

ProsrEm VIII, To find two numbers, such that if unity
be added to each of them, as also to their sum and diffe-
rence, the four sums will be square numbers.

Solution. The equations to be solved are
z+4 1=a?, z+y+1l=ct,
y+1=07, T—y41l=ds,
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By eliminating = and y, they are ,
a® 452 —1=c?, a® —b +1=d*;

or by addition and subtraction,
. 2 =c3 +d2, b —1=3§(c* —d2).
"The first of these gives, by Prob. II., Cor. 1,

c=a(sin A 4 cos A), d=a(sin‘A.—cos A);
-and the second becomes

52 — 1=a?sin 2a.
‘Hence we get, by putting, as in Prob. III.,
b+ 1=acotis, b—1=asin 2o tan §B;
b sin B=a(cos 23B + sin 24 sin 248,
sin B = a(cos 23B — sin 24 8in 24B); 7

sin B

or a= - :
cos 23B — sin 24 sin 238’

cos 238 -+ sin 24 sin 238
cos 23p— sin 24 sin 238’

-and the required numbers will be
z=a?—1 and y=052—1.

These equations contain all the solutions of the question;
but to obtain whole numbers, some modification is ne-
-cessary.

Take B= (p(t;‘-), then

2tu t? 4 sin 2a%2

q=_——"—0 b T o o..2
43 —sin 2Au3 t: — 8in 2Au
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and for every value of A a series of whole numbers can be
obtained for @ and & by the methods of Lagrange or Gauss.

Thus if A =¢(2), ¢=2r, u=5s, these equations become

5rs r% 4652

a4=— b= ———_
72 —6s2’. r2—6s2’

then if we take
r=3}(54+-2v6)+(5—2v6)}, s= 217; § (5-+2v6)—(5—2v6)},.
i being any integer, we shall always have
72 —6s2=1,
and therefore @ and & integers. Fort¢ =1, we have r =5,

£=2; a=50, b=49; z=2499, y=2400.

Prosrem IX. To solve the equations, in rational num-
bers, )

f(z,y,2...)=a? +22 =02+ y2=c2? 4 22 = &ec.

in which f is a functional characteristic.

Solution. Take, as in Problem II.,

b=acosa+ zsina, . y=asin A— 2 Co8 ],
P
c=acosB+ 2sinB, Z=as8in B— 2 CO8 B,

&ec. &c,.
and we shall thus have |
a? +22=024y2=c24 22 =&c.;
and the values pf ¥, =, &c., are to be written in the equation
f(z,y,z....)=a2+22, . . (a)

and this equation must be solved for z.
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Proerem X. To solve the equations

f(z,y,z....)=82=qa? +23;b3+y3 =c? 422 =&ec.

Solution. Take, as in Problem 1.,

a=88in A, Z =8 CO8 A,

b =2 sin B, Y =8 CO8B,

c=ssinc, =28 Co8 C,
&c. &c.

and these values of 2z, y, z, &c., are to be written in the
equation _ -
f(z,9,2....) =232 N ()

General Case. Let

f(z,y,z....)=(2+y+ 2+ &c).

Here equation (@) becomes
z4y+z+ &c.= a"i,
$(cos A + cos B 4- cos ¢+ &c.) = c%,
21

cosA+cosB+cosc 4+ &c.=s" ";

or, as it may be written,
2.

TcosAa=s" ", . . . (B
using, as we shall do hereafter, the symbol (Za) to represent
the sum of all the quantities of the same kind as a.

Example. If r=1; s=Zcos 4, and
zZ=co8AZ co8 A, y=cosBZcosA, Z=coscZ cosa,&c.,

will be & series of numbers whose sum is a square, and such
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that if the square of each number be taken from their sum,
each remainder will be a square number. Thus, if

A=9(2), B=9(3), c=9(});

127 O Hi

are three such numbers.

ProBrLem XI. To solve the equations
f(z,y,2....)=a2—22= »b’l—y’ -2 —z2 =&ec.

Solution. Take, as in Problem IL., Cor. 2,

b=asecA & ztana, y=atan A £ 28ecA,
c=asecBt ztanBs, Z=atanB % Z sec B,
&ec. &ec.

and these values of y, z, &c., are to be written in the equa-
tion
f(z,y,2....)=a%—23, . . (a)

ProsrLeM XII. To solve the equations

f(z,9,z....)=83=a? — 23 =32y mc? —2z? = &c.

Solution. Take, as in Problem I., Cor.

a =8 cosec A, zZ=8cotA,

b =5 cosec B, Y =8 cots,

¢ = 8 cosec C, z=28 cot c,
&e. &c.

and these values of 2, y, z, &c., are to be written in the
equation
f(z,y,z....)=8. . . . (a)
3 .
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General Case. - Let
f(z,y,2..... Y=(z +y+2z+ &c.) =43,
or, zty+ot&e=14,
and equation (2) becomes
cot A 4 cot B+ cot ¢ + &c.= 200tA=8§-l.
But since cot A = ¥(cot A — tan 3a),
= cot %‘—Ztan 3a =251,
Now put cot 38 = ktan 3a,

cot ¢ =/ tan Ja,
&e.,

and the preceding equation becomes
2_
cot &A(l —_ 2‘%) + tan 3A(Zk—1)=2s" '

Now let %, 7, m, &c., be taken so that

1
T—=1.
% 1

and we shalPhave
cotda=3(Zk—1)'"F, . . (3
which completely determines the problem.

This class of questions was, I believe, devised by my early
friend, Mr. T. Beverley, who died about the year 1833; and
this is very nearly his solution, translated into the notation of
the angular analysis. The only one of his questions to which
I now have access is question 641, No. 28, Math. Com-
panion, viz.

“ Find numbers, ad libitum, whose sum is a 4sth power,
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and such that, if the square of each be added to their sum,
the several sums shall be all squares.”

In this case we must have
r=1, 2=, s=p
cot A = §(Zk—1)¢™,

and to render the numbers positive, it is only necessary to
have

cot3a > 1 < %,
Sk—1_ Sk—1
or & < 5 > o
% being the least of the numbers %, /, m, &c.

Example. To find four numbers, whose sum is a biquad-
rate, or # = 1, having the required properties ; then

cot 3 =§(Zk —1)¢732,

Letk=2, 1=3, m=6, thenZ%:% +3+3=1, and
2k =243+ 6=11, so that we must have _
12 £ 65> 23,
If t=2, wegets=4, cota=4$, cotdB=4, cotic=12,
cot dp=2%*, and the numbers are

e=h y=H# == v='H,

whose sum is 16.

Scholium. The functions indicated by (f) in the four pre-
ceding problems, are understood to be not only rational and
algebraic, but also such, in genereal, as to render the final
equations (a) of not more than the second degree. These
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equations will then generally be dependent, as will be shown
in many of the following examples, on another equation of
the form

k2 =a 4 b5cosA4csinAa 4 dsinacos A esin 2a,

which, for the purpose of solution, may be put in the form
shown in the next Problem, to which it is easily reduced.

Proprem XIII. To solve the equation, in rational
numbers,

k2=m cos?3a+nsin?3a + (pcos?3a+gsin?3a)sina +rsin2a.
Solution. Since the root of this square cannot have a term

containing sin A and cos 3A in an odd degree, it must be of
the form

*%=d cos 23a + esin 23A + fsin 4,
k3 =d?cos 43a }-e?sin 43a
~+ 2fsin A(d cos23A + e sin 23a) + (f2 + 4de)sin 24 ;

and to make this value of %42 equal to that in the problem, it
is necessary that

(m —d? cos 23A) cos 234 + (n —e? sin 23A)sin 23a
+3$(p — 2df) cos 23A 4 (g— 2¢f) sin2§a} sin A
+ (r—f2—3de)sin24=0. . (a)

There are, in general, three cases in which this equation can
be completely resolved ; that is, in which the value of tan §a
or cot A can be expressed in a rational form.

Case 1. When m = u? and n = »2 are complete squares ;
then we may take

B3=p2, 2 =2, ord=pu, e=4%v,
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then, substituting these in equation (), and dividing it by
sin A, it becomes

(p—2¢f)cos’3a+(g ¥ 2¢f)sin?3a+ §r—f 2+ H(u*¥»)2 sina=0.
‘We may now take either, first,
p—2wf=0, f=L;

2r—3f 3+ J(uF )2 _ 4ru® +(u F 2) 302 —p?

Y Y i —g) )

and the root of the square is
khk=pcos?iat vsiu’%A+2—7:‘sinA. .. ()
Or, secondly, we may take

q
g¥of=0, f=xZ;

2r —2f2 4 J(uF¥)2  4rv? 4 (uFr)2r2—g?

ot = = s (d) .
cot 34 2uf—p 2 (kqu—pr) ’ (@
and the root of the square is

+k=pcos23a+vsin23a ¢ 2q

-—ysin A . . (e

These equations give, in general, four values of A and k.

Case 2. When, only, m = u2, a square number; then we
may take, in equation (a),

d?=p? and p—2df=0; or d=p,f=_§;;
3’
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and, after dividing by sin 244, it becomes, after some reduc-
tion,

(p’+n+4r—%—2pe)cos’§.«+(n—e’)sin’t}a+(q—- %?)sinmao;

so that if we make

2
u24n+t 47'—%—2/«!:0,

L B (et — p?

o
r 2

, then

pe? —n) _ dut+ (ntdr)u? —p2 {2 —dnut

ot 34 = Gogupe) — Squi— i (ot a—pe}’ )

and the root of the square is

wt+(n+ dr)u?—p?

+ &k =pcos?ia 4+ 5ud sin’QA-{-é:—‘-sin A . (8)

Case 3. When, only, n = »2, a square number. This case
can be deduced from the preceding one, by writing 90° —3a
instead of 4, and transposing the letters. So that, instead
of (f) and (g), we have

3”‘+(m+ 47’)"”——9'%’—-41"1'3 h.
8pﬂ°—4q733w4+ (m+ 4’)"2_9:¥' * ( )

4 2__ 2
ik—vsin’§A+y +(m-;::)y g cos’:}A—}-Eq;sinA. . (%)

tan A =

Several particular cases are deserving of notice, as occurring

frequently.

Case 4, 'When m = n = u2, or the equation is

k2 =p* 4 (pcos?3A +gsin24a)sin A 4 rsin 2a.
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Equations (b), (¢), (d), (¢) become for this case

_ 4ru? — p? _p’—4y’(r+p’)
tan A —?ﬂ”(p—q)’ or = weptq | %)

i\k=,u+%‘sinA, or=,ucosu+£‘sin,\; . (a)

_ 4rp? — g2 _ g?—4p2(r+4°)
cot A= i (g—p) or “Eptq ' (d)

ik::-‘u-f—%‘sinA, or=,ucosA—-%‘sinA. . (&)

Case 5. When m =n=u? and ¢ = — p, or the equation is
k2 =p? 4 psin A cos A 4 7sin 24,

Then the equations (&,), (), (d.), (&) give the solutions

A =180° or 0°; k=1 u.
4dru? _],2 P2 — dru?
tan &A == 4p‘ui——’ cot %A = W—, . (bg)
? . .
ik—y-l-ﬂsm‘«, ik=#—§;SIBA; (a2}

the two values of A differing by 180°.

Case 6. When m =n =2 and ¢ =2, or the equation is
k3 =p3 4 psin A 47 sin 24,
Then equations (3,), (¢,), (d,), (&) give the solutions
A=180° or 0°; k=t p.

PP — i (r+u?) PP (rte?)
tan a Tpu? Yy cot A = Tpu? 3 (b,)
+hk=pcosa 4 %sinA, ik:_ ycosA—ﬁ—‘sinA;(c,)

the values of A being supplementary. -
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ProsrLEm XIV. To solve the equations
zyz
z4+y+=z
$3 4 22 =a?, $3 4 z2 = c2.
Cunliffe, Math. Companion, No. 27, p. 349.

o gy =t

Solution. These equations may be written

TYZ g2 g2 2?2 = B2 — g2 =2 — 2
— T =s2=g2—22=02 —y2 =2 —22,
z+y+=z Y
and are the same as those of Problem XII., having
Yz
f(z, 9,2) = ———,
&yo)="mrrs

and using the complements of the angles A, B, ¢ of that
problem instead of the angles themselves, we have

zZ==3stanAa, Yy = stanBs, x=stanc;
and equation (@) becomes, after dividing it by 2,

tan A tan B tanc
tanA 4 tanB 4 tanc

tanAtanB tanc =tan A <+ tanB 4 tanc;
and therefore, as is well known,
A+ B 4 c = 180°
and, by equation (14), Chapter L,
e =o(2 — g(™et P
A_'p(u)’ B_"p(q)’ C—qj(mp—nq :

Example. Takem =2, n=1, p=3, ¢=2, s =1§5;
then :

z2=055 y=99, =z=7"0.
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Prosrem XV. To find three numbers such that the square-
of each of them added to the sum of the products of every

two of them may be square numbers. -
Wright, Math. Companion, No. 17.

Solution. The equations to be solved are
2?3 +zy + vz + yz =at,
y? oy +2z +yz =102,
23 +ay + ozt yz=c?;
which are the same as
zy+rztyz=a?—22=82—y?=c? —23;
and therefore by Problem XI., we may take
Yy=atanA—28eCA, & = a tan B — 2 8€C B,
and equatic_m (a) is
zy + 2z 4+ yz = a? —22;
or, b'y substitution,
$22z8in 34 sin §8 — a sin(a + B)}2 =a? cos 23(a + B),
2z sin 3asindB—asing(a+8) =1+ acosd(a+s)

Using the lower sign, and supposing each of the angles
A and B to be less than 90°,

z=a—3}a(cot3a —1) (cot 3B —1).

The conditions necessary to render the three numbers posi~
tive, may be represented by

(cot 3o —1) (cotjp—1) < 2> 2(1 —sina) > 2(1 —sinB);
which show that cot A must be between the limits ‘

cot $(90° —B) and sin B 4 cosB,.
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.

while it must not be included within the limits

14 v2—cot?3s an 1—v2—cot 238
cotis —1 cot3p—1 '’

this latter condition being unnecessary when cot 3B > v2.

Example. If cot 4B=2, it is only required to have
cot3a < 3> 1
thus if cot Ja=3, we get z=3a, y = 54, 2= {4a; hence
if @ =60, the numbers are 45, 27 and 5.

Proerem XVI. To find three square numbers, such that
half the difference between the sum of every two and the

third may be a rational square.
Cunliffe, Matk. Companion, No. 14.

Solution. The equations to be solved are
ba? + 97— 27) = a3,
(2 —y2 4 27) = 62,
=22+ 2+ 2?) =c%;
which may be written thus
3(22 + 92 +22)=a? + 22 =b? +y? =c? +2?;
and therefore we may take, as in Prob. IX.,
Yy =asin A4} 2 cos A, z=asin3+zcosn;
and equation (@) becomes
et 4y hot)=at 422,

or, a*(cos’a+cos’8)—az(sin 2a-}-sin 2B)+2%(1—cos’a—cos’s)=0.
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The simplest solution of this equation is
B=90° —a,
a=2zs8in24a;
80 that, by substitution,
Yy = 2(2 cos A—tos 34),
z = 2(28in A 4 sin 3a).

Example. If A =¢(2), 3o =9(i), Chap. L, equation (9),
and if we take z = 125, the roots will be
244, 267, 125.

ProsLem XVII. To find four numbers, such that their

sum, and the sum of every two of them, may be square
numbers.

Solution. The equations will be the same as those of
Prob. VII., with the additional one

vtatytz=s?;
80 that the eliminated equations are
s ma? 4 f2=b2 42 =¢2 +d2.
Then, by Prob. X,,
Q= $CO8 A, b=gscos B, c=28C08C;
f=csinA, e =32 sin B, d=ssinc.
So that
20 = 82 (cos 2A + cos 2B — sin 2¢),
22 = 82 (cos 34 — cos 2B - sin 2¢),
2y = s2 (— cos 2A + cos 2B - sin 2c),

22z = $2(8in 2A — cos 2B - cos 2c).
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‘These values include all the solutions of the question.

following cases may be noted :

1° Take ¢ = A + B, then
© =82 cos A cos B cos (A + B),
% =32 cos A sin Bsin (A -+ B),
y =232 sin A cos Bsin (A + B),
z=—32gin AsinBcos(A+B).
2°. Take ¢ = 90° — (A + B), then
20=2$}1 4 2sin A sin B cos (A + B)},
2z =$*}1 — 2sin A cos B sin (A + B)},
2y =#}1 — 2 cos A sin Bsin (o + B)},
22 =431 — 2 cos AcosBcos (A -+ B)}.
3°, Take B =A+ B, c =A—3B; then
20 =53(cos 2, < cos 2A cos 2B),
22z = $2(cos 2A— cos 24 cos 2B),
2y =s2(sin 24 — sin 24 sin 2B),

2z = s3(sin 2a + sin 2a sin 2B).

The

The first combination, although the neatest analytical forms,
must have one of the numerical results negative; but the
second and third include positive results within limits easily

assigned. .
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Example 1. Let a=9¢(3), B=¢(2), A4 s=of)
A—3B =¢(8); then taking s =65, the second set gives

v=>528}, z=96}, y=992}, 2 =2607};
and these may be multiplied by 4, to make them integral.
Example2. Leta=¢(2), B=¢(6),24a=9¢(}),2=9(}});
then taking s = 185, the third set gives

v=23717, z=09944, y =872, =2z=21032.

ProsrLem XVIII. To find four numbers, such that their
sum, and the sum of every two of them, may be square
numbers ; and also twice the sum of the first three may be
a square number.

Math. Companion, No. 7, Quest. 15.

Solution. The equations will be the same as those of
Prob. VII., with the two additional ones

2v+z+y) =87 v+ztytz=43;
and the eliminated equations will be
2 =04 fl=mbfel= c3.-|-d’,
g2 =a? 4 b3 4-d2.

Then, by Prob. X., we may take

a =gsinA, b=4ssinBs, c=gsinc;

Sm=2co8a, e=5§CO8B, d==8cosc;
and the last equation becomes, by substitution,

&3 = $3(sin 2A 4 sin 2B 4 cos 3¢).
4
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“Take, as one of the simplest solnti?ns of this equation, |
C=A—B, '
then it will be -
&3 =33(1+sin 2B 8in A cos A 4 2sin 2B 8in 24),
which is the equation of Prob. XIII., Case 5, so that -
g=28(1+% }sin28sina),
tan 3o = % tan B (1 4 sin2B),
or cot A =—3 tan B(1 + sin 2B).
Taking the first result, and putting
_ 8=t(4 —sin 228 + sin ?B cos *B),
we shall have .
a =2tsin 2B (1 4 sin 2B),
b =tsin B (4 —sin 228 + 8in 3B cos *B),
¢ =tsin °B (4 + cos 4B),
d =t cos B (4 — sin 2B cos *B),
€ =tcosB (4—sin 228 + sin 7B cos *B),
JS=1t(4cos 2B — 4sin *B—sin 2B cos *B).
Example. Take 8 =¢ (3), 2B=¢(4) and t=4.57; then
a == 102000, 5="75608, c=37206,
d = 120392, e=100808, f=63790;
and, by the formulas of Prob. VII,

v = 813016786, z = 9590983214,
y = 4903250450, z=571269650.
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ProsremM XIX. Tosolve the equations.
z’+!l’+e.'/ é=a2'
224234 ey z2=03,
Y3+ 224 eyz=c?.

e being any given number
Math. Comp. No. 7, Quest. 14.

Solution. The given equations may be written
22 4y?t2iteyz=a42? =924 y3=c?+23;
which are those of Problem IX. Taking then
Yy=asin A+ 2cosA, Z=aqasin B+ 2 cos B;
equation (a) becomes, by substitution,
232 (cos?a+ cos?B +¢€ cosA) +az (sin 24 + 8in 2B4-esina)
=a? (1— sin®a — sin?s).
Let B =90°— 4, then this becomes
z(l+4ecosA)+a(2sin2a+esina) =0;
so that we may take
z=t(esina+42sin24), a=—t(l-fecosa);
and then
y=tsin3a , z =%t '(e cos 24 - cos 3a).
Example 1. Let e=1, and take a=9(3), 2o =¢ (),
3a=0¢(f)and ¢t =13%; then
2=385 y=13, z=1.
Example 2. Lete = —1, and take A =¢(2), 24 =¢(}),
8Aa=¢(#) and ¢ = 145 ; then

z="70, y=22, x=41.
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Prosem XX. To solve the equations
o +y? +ay +az+yzr=al,
z? 22 + 2y 4 2z 4 yz =57,
y? + 2* 2y toz +yz=cl.
Math. Companion, No. 8, Quest. 26.
Solution. The given equations may be written
234+ Y34z 3t zy ezt ys=a? + 2% = b2 + y? =¥+ 23,
which are those of Prob. IX. Taking, then,
YsmaeinA—2 co8 A, Z='a 8in B— 2 CO8 B;
equation (@) becomes, by substitution,
a? (cos 3B —sin A sin B —sin ?4)
-+ az }sin 2A + sin 2B + sin (A 4 B)— sin A —sin B}
=22 (cos 2A 4 cos 2B 4 cos A cos B — CO8 A— COS B).
Now put
2a (cos 2B — sin A sin B —sin 24)
-+ 2 §sin 2A 4 8in 2B }-sin (A + B)—sina —sin B} =% k 2;
thién we shall find,
k* =16 sin?}4 sin 2}B cos 2} (A—B) + 4 cos A cos B cos (A—B)
=3 (2 cos A cos B + sin A sin B)?

- 16 sin 244 sin 24B§cos 2} (A —B) — cos 2}A cos 2}m}.
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Hence, if we take

cos § (A—B)=—cos §A cos }s,

or cot §A = — § tan §m.

we shall have

k =2 cos A cos B 4 sin A sin B,

a(2 + 3cos B+ écos’n) =z}¥F (5 + 3cosB)—sinB(1+3cos B)}.

Then taking
a=t {5+ 3 cos B— sin B (143 cos 8)},
we shall get -
z=t(2 4 3 cos B+ 3 cos 28,
Y=t (2 —4 sin B 4 5 cos B 4- cos 2B),
z=1¢ }(5 + 3 cos B) (sin B — cos B) — sin ?8).
To render all» these numbers positive, it will be found neces-
sary to take
either, cot 8 > 1, 412 < 2, 24;
or else, cot §8 > —, 354 < «, 225,

Example 1. If8=¢(2) and ¢ = 3}, we get
z=9, y=27, =2=6I.

Example 2. Ifs =¢(}) and t—;—-: » We get

z=13, y=2, =z=19.
4*
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ProBLEm XXI. To solve the three equations
23 +y? + 222 =a?,
z? + 27 + 23 =52,
222 4 Y2 4 22 == 2,
Math. Repository, No. 4, Quest. 95.
Solution. The given equations may be written
234 yit2i=al —22 =82 —y? =¢c3 — 23,
which are those of Prob. XI. Then, taking
y=atanA-|2zsecA, T=atanB-}2secB;
and substituting in equation (a), it becomes
a? (tan 2a 4 tan 2B) 4 2 az (tan A sec A + tan B se¢ B)
+ 22 (2 4 sec 2A 4 sec 2B) = a2,
Now, put
-a(l—tan?a+- tan?s)—2z(tan Asec A--tanBsecB)=4kzsecasecs;
-and we shall find
%3 =6 cos 2A cos 2B 4 2 sin A sin B — 2,
.Assume  p? =6 cos B —2=143 cos 28, .. .(a)
and .it becomes
k? =p? cos 3o 42 sin B sina —2 8in 24 ;

which is the equation of Prob. XIII, Case 6; so that

k=pcosA+BlnB81nA
V4
2 in 2
tanim:zp +sin 2B

2p%sins
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‘With regard to equation (@), no general solution of it can be

given; but, if B’ be a particular value, such as 8’ = ¢ (2),
which renders

P2'3=1 1 3 cos 28,
by putting B=8 46, it becomes
p? ==p'? — 3 sin 2B’ sin 20 — 6 cos 2B’ sin 20;

and, by Prob. XIII, Case 5,

I‘ 8
fm 2 +8
tan § 2p'? sin 28'’

and thus other solutions may be derived.
Taking the case B = (2), p =4, we have tan §a = 1§,
18929 a = (& 21318 — 49300) 2.
By using the upper sign we get the numbers
7, 7, 23
for z, y, z; and by using the lower ones

18719, 18929, 62609.

ProsrLEm XXII. To find three square numbers, such, that
the sum of every two of them is a square number.

Solution. We have to solve the equations
z2+y2_a2’ z2+zz=b!, ya +z3_c2;
or, as they may be written,

22 +y2 + 2® =a? +z2___.bz +3/2 '___,,z_i_z:,
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‘which are the equations of Prob. IX.; so we may take
y=asinA—2zcCco8A, Z = asinB— 2COSB;

and equation (a) of that Problem, or the first of the giverr
-equations, becomes

.23(cos? A+-cos?B)—az(sin2a+-sin28)--a?(sin?A4-sin?8~1)=0.
"The most simple solution of this equation is
B =90°—a, z=2as8in2A;
80 that the roots of the three squares are
2z =2a sin 24, Y =—acos3A, z=asin 3a.

Example. By taking a = ¢(2), 24 = ¢(}), 34 =o¢(4),
and e = 125, we find the three roots

240, 117, 44,

Cor. Let% be the hypothenuse of a right-angled triangle,
a, b the two sides, and a the angle opposite g, so that

a=rhsina, b= kcosa.
-Multiply the three preceding expressions for z, y, 2, by
éa:’ and they may be written
423 ginA cos A, A3 cos A(4sin2a —1), k3 sinA(4cos2a —1);
. or, 4abh, b (4a®—FR3),  a(402 —A2).

These are the expressions for the roots of the squares given
by Dr. Saunderson, who first found the numbers 240, 117, 44.

ProBLeEm XXIII. To find three square numbers, Elich,
that the difference of every two of them is a square
number.
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Solution. Here the equations are
22 —ylmal?, 2 —23=53, yr—21=c3,
The two first give by Prob. L., Cor.,
Y= CO8A, Z=ZCosB;
and the third becomes
c? =z2%(cos 2A — cos 2B) = 22 sin (B + A) sin (B—a),

an equation which admits of a vast variety of solutions, of
which we will notice two or three.

Take B ==a 4 ¢, and it becomes
- ¢ = g?sincsin (2A 4 ¢)
= 21 sin 3¢ (1 4 cot ¢ sin 24 — 28in 24).
Then, by Prob. XIIL, Case 5,
c¢=uzsinc (1 — cotcsin a,)

-

24 cot?c 14 sin3c
2 cotc sin 2c

cot $a=

Now take .z =¢§(1 + sin2c)? 4-sin22c};
then y=2¢t}(1 + sin ®c)? —sin 226},
z =t cos c(4 sin 2¢ — cos 4c).

Example. If ¢ = ¢(3), 2c = @(4), t ==} . 5%, the num-
bers are
2165, 725, 644.

Again, since A =B — ¢, the equation is
¢? == 22 gin ¢ 8in (2B — )
== 222 gin ¢ sin (B — §c¢) cos (B — §¢)

== 22 gin 2¢c (8in B cot §c — cos B)(cos B - sin B tan §c).
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Now put sin B cot §c — cos 2§ =0,
or - 2 cot §c =cot §B;
then this becomes
¢? = 22 sin 3¢ sin 238 (cos B + sin B tan 4c)
= 22 sin 2c sin *3B (cot 238 4 2 cot 3B tan yc —1)
= 22 sin 2c sin 438 . 42,
in which, by substituting the value of c,
k2 = cot?}B + 3, or k2 —cot3}s =3,

‘whence, by Problem IIL.,

2 4 cosp __142cosp _1.+2cosn.
k sinp cot§m= sinp ’ c°t%°“m—’

-and we get the roots of the numbers-
z=1¢t}(1+ 2cosp)* + 5sin ?2p(1 4 2 cos p)? 4 4sin *p},
y=1t}(14+ 2cosp)* 4 3sin 2p(1 4 2 cosp)? 4 4sin ‘Di,
2z=1¢3}(1+4 2cogp)* 4 3sin2p(1 4 2 cosp)? — 4 sin 2p}.
Example. If p=¢(3), ¢ =54, the roots are
1105, 1073, 975.
Once more, in the equation
c?=2z3sin?c(sinB cot }c —cosB) (cos B+ sinBtanc)
=422 sin B sin 2c (tan 238 + 2 tan §8 cot 3¢ — 1)
X (cot 23B + 2 cot 3B tan ¢ — 1),

Pput cot?3B 4 2 cot 3B tan 3¢ — 1 = (cot 8 — cot D)3,
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we get .
. tan 3B = 23sin 23 (cot p -} tan c) =sin b + 2 8in 23D tan §c,
and, by substitution, _ ‘
¢? = %x2 sin ?B(cot B — cot p)? . &3,
" in which,
k2=sin 3c (tan 238 + 2 tan B cot }c —1)
=16sin*4psin24c 4 4sinpsinc(cos 23c + 2s8in23psin 2§c)
— cos 2p sin 3¢,

If the formulas of Problem XIII., Case 1, be applied to-
this ‘equation, there will result precisely the last solution ; but
if we apply the formulas of Case 3, we get

1—2cosp

— 4 sin 34 sin 2 1—2cosp . .
k=4sin }n\sm 3c+ % 5in 3o cos 23c +-sin D sin c,
_(1—2cosp)*
tan jo = 8 sin D sin 230’
5—4cosp 4 sin p(4— 5 cos p)
then t = = - s
en tan s tomp o0 3a 21—40cosp 4 20cos?p’

and the roots of the numbers are

2 =1¢(41— 40 cos p)(17 — 40 cos p + 24 cos ?p),

y=2t3(21—40cos p + 20 cos ?p)?— 16 sin ?p(4—5 cos p)?},

z=t(9— 40 cosp 4 32 cos ?p)(17 — 40 cos » + 24 cos ?p).
Example. If p =90°, the roots are

697, 185,  153.
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Prosrem XXIV. To find three squar.e numbers, such
that the differences between the sum of every two of them
and the third may be square numbers. ‘

Solution. The equations to be solved are
2 +y? —22=a?, 2?2 —y? 4 22=03, —a?+y?423=(3;
or, by addition,
2zt =q2? 4 32, 2y?=a?4c?, R222=0524c2,
The two first, by Prob. II, Cor. 1, give
a=2zv2sin (45° 4 A), b=2v2cos (45° 4+ 4);
a =yv2sin (45° + B), ¢ =yv2cos (45° 4- B)..
To make the two values of a equal, we may take
z=1t+v2sin(45° + B) y=1tv2sin (45° 4+ A);
then & 4 ¢ = 2¢cos (a + B), b—c=2tsin (B—1A);
23 = §(b* + c?) =3B + ) + (b—0)'}
= t3}cos 2(A + B) + sin 2(B—4)}
= ¢*(1 — 8in 2B sin 2a).
So that, by Prob. XIII., Case 5, we have
2z = 1(1—sin 2Bsin a),
tan $A = §sin 2B.
and if we put t =1(4 - sin 228), we shall have
x = t'(cos B + sin B)(4 + sin 328),
y = t(4 + 4 sin 28— sin 228),

2z = !'(4 — 3 sin 228).
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Example. If B = ¢(3), and ¢ = }. 55, the roots will be
769, 595, 965.

“ Another Solution. The first equation gives, as before,
a=zv2sin (45° + ), b =2zv2 cos (45° +a);
but the first and second equations give
a? =222 —32=2y2 —c?, or b2 —c2 =2 (22 — y3).
Then, by Prob. IIL, Cor.,
2 bsinB=2(3 + cos B) 4 ¥ (1 4 3 cos B),
2csinB =2 (14 3cos B) + y (3 4 cos B);

or, by comparing the values of 5, we may take
z=1¢t(lL+ 3 cos B),
y=1¢ §2 v2sin B cos (45° 4- A) — 3 — cos B},
b=1t+v2 (1 4 3 cos B) cos (45° 4 A),
c=1t §v2(3 4 cos B) cos (45° + A) — 4 sin B}.
Hence the third equation becomes
22=¢2 {u? cos2§a+»2sin 23a+4-(pcos 2§ A4 ¢sin 7§ A)sin A,
where 4 =3 4+ cosB— 2sinB, » =34 cos B+ 2sin B,
P2 =4sinB (3 4 cos B) — 2(3 + cos B)2 4 4sin 28,
g =4 sin B (3 + cos B) + 2(3 + cos B)? — 4sin ?B;
and using the upper signs in equations (&), (¢) of Prob. XIIL ,'
z=¢t}ucos 33 A 4 » sin 2*.&-[—%’ sin A},

3 4cosB +4sinB
2(3 +cos B+ 2sinB)”
5

cotF A= —
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If weput2=1¢'}5(3+4-cos B) 24-24sin B(3 4 cos B) 4 32sin 2B},
we get

z=0t'(3cosB+1)$5(34-cos B)2 4-24sin B (3+cos B)-:-|-32 sin?B},
y=¢$5 (3 + cos B)® + 22 sin B (3 + cos B)? — 64 sin ’nz.,
z=1t'§(3 4 cos B+ 28in B)® 4 4sin? B(15+4-5 cos B+ 14 sin B)}.

. Example. If B =90° ¢ = 1, we have the roots
149, 269, 241.

ProsLeEm XXV, To find three square numbers, such that
the difference between twice the sum of any two of them and
the third, may be square numbers.

Solution. The equations to be solved are
223 4-2y2—22=a?, 2224-222—y3=02, 2y2-}222—z2=c3.
The two first may be written
a4 z2 =(z4+y)? + (2—y)?,82 +y 2 = (z+2)? + (z—=2)*;
and give, by Prob. IL, N
z=(x+y) cos A—(x—y)sin A=2(cos A—sinA)+y(cos A +sina),
y=(z+z) cos B—(2—2) sin B=2z(cos B—sin B) +2(cos n-l;sin B).
Eliminating 2 between these equations, we have
y31—(cos A+ sin A)(cos B+ sin B)} =z}cos B— sin B} (cos B
+ sin B) (cos A — sin A)};
whence we may take, to solvé the first two equations,
z=t§l— (cosA + sin A) (cos B + sinB) §,
y =t $cos B—sin B + (cos A — sin A) (cos B - sin B)},

2z =1t §jcos A—sin A + (cos B— sin B) (cos A + sin a)}.
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Then the third equation becomes
F=2y2 4 222 —32 )
=84’ cos’§a+»*sin*Ja4(p cos*3a+-gsin?3a)sin a4 rsin®a};
in which,
=14 3cos B—sins; ¥ =14 cos B— 3 sinB,
2 =—2(1—cosB —sin B 4 58in 2B 4 4 cos ?8),
¢ = 2(1 4 cos B 4 sin B + 5 sin 2B + 4 sin 2B),
r = 8(sinB — cos B).

From the equations of Prob. XIII., Case 1, either
c=1¢}pcos 2§A £ » sin 23A + ;’—-" sin A},

16 4 13sin B — 8 cos B— 5 5in 2B — 2 8in 28

L tanda = (2+ sinB + 2cosB) (6 + 48inB—4cosB)

’ _ (1 —sinB)(5—cosB 4 4sinB)
I tanfa = (sin B+ cos B)(14-3 cos B—sinB)’

-as we use the upper or lower sign ; or

c==t}pucos?§A £ »sin 23 & % sin A},
16—13 cos B 4 8sin B—5sin 28—2co8 2B

(2— cos B —2sin B)(5 + 4sinB—4 cosB)’

IIL. cotda=—

(1 + cos B)(5 + sin B — 4 cos B)

IV. cotga = (sin B 4 cos B) (1 + cos B — 3 8in B)’

Example 1. If B =0, (I.) gives tan A = 2, and if we take
t = §, we get for the roots 1, 3, 4.

Example 2. If B =90° (IV.) gives cot o = — 3, and
taking ¢ = §, the roots are 1, 2, 3.
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Example 3. If B = ¢(3), (IL.) gives tan A = — 53, and
the values of z, y, z are 131, 158, 127; the corresponding
values of &, b, ¢ being 261, 204, 255.

Example'4. If B = ¢ (2), the four formulag give

¢ _ 145 35 227 34
LR =T I e T
and taking for ¢ the four separate values

76085 3965 130925 6025
2 ' 6°' 2 ' 12’

the roots of the squares will be as in the following table :
r= | y= | z= | a= b= |c=
I | 31513 | 36508 | 30579 | 60965 | 50234 | 59521;
IL. 619 404 377 975 942 477;
IIL. | 46282 | 52571 | 30939 94997 58607 | 72800 ;

Iv. 134 823 607 | 1011 309 | 1440.

It is known that, if 2, y, z represent the three sides of a
plane triangle, 3a, 3, 4c are the lengths of the lines drawn
from the three angles of this triangle to bisect the opposite
sides ;—such will be the case with the numbers in Example 3,
and the first three sets of numbers in Example 4.

ProsrLEM XXVI. To solve the equations
22 + axy + dy? = g2,
22 + bzz 4 e2? = b3,
¥? +oyz + f22 =2

a,3, ¢, d, ¢, f being given numbers.
Wallace, Math. Repository, Quest. 310.
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Solution. By Prob. 1V., the two first equations, are evi-
dently satisfied by taking

y §ina-4asin?3a a4 2cot A

T cos?ja—dsin23s  cot2ia—d
‘"z _sinB4bsin2is b4 2cotis ~8;
z cos?3}B—esin23B cot?3s—e =’
: z B .
8o that 7 = and the third becomes
+2 o 22 8 B2
y—2f=1+6.7+f.;§—1+0-—a-+fo;;2-.

Writing in this the value of §, and putting
k2y? = 0242(cos 2}B —esin 2}3)3,
‘we shall find, after multiplying by a? (cos 238 — e sin 233)?,
& = o*(cos *}B—esin?})*-ca(cos’B—esin’}B)(sin B4 sin’}B)
+ f(sin B + & sin 23B)3?
=a%cos?}B4-nsin*}B4(ca cos?}B +¢sin*3B)sin B + rsin’s;
in which,
n = a3e? — beea 4 b2f, q = 2bf— cee,
dr=—(e+1)2a? 4 (e + 1)bcx + (4—32)f.
Then, by Prob. XIII., Case 2,
2ea? —bcc;;l- =4S in 23p 4 }csins,
(c—da)? 4 4ea? — 4 f
doc— ooy’
- 8a(c— ba)}(4e —b2)a2 — 4 f 4 c? f
e F 47— o by 17 —btgf

k=acos 2} —

cot %B =

8
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That this solution may give positive values for z, ¥, 2, it is
necessary, and it is sufficient, that « and # should be positive
quantities; and, to [assist in determining the limits within
which this takes place, it may be well to observe that the de-
nominator of the value of § is the product of the four fac-
tors

(2Ve+b)e + 2vf—c, (2Ve—b)e+ 2vf+ o,

(2ve + b)a — 2vf—c, (2ve — b)a — 2v/f +c.
| Example. Let the equations be
23 4 2y —2y? =g2, 22 —zz | 3223=1?, y2 + 3yz 1 22%=mi?;
thena=—0>b=1, c=3, d=—2, e==3, f=2; s0 that

Y —u 2 4 tan 3a

z  cot3A +2tan FA’

z 8 8a(e 4 3)(11e2 1)
Z " (tle? —6a—1)2 —384a?’

To make # positive, « must be excluded from the limits
2,3653 and ,06964;

therefore cot 3a must be excluded from within the limits
29,14 and —42;

while, to make a positive, we must have cot o > — 4. That
is, we must either have

cot 34 > 29,14; or else cot 3a < —,42 > — 5.
If we take cot 3a = 31, we shall find

z =146180939, y=9563239, =z =1472557968.
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Case. The third equation might be solved, like the two
first, by taking

z f sinc 4 csin24c ¢ 4 2%cot o

—_——

Yy & cos?ic—fsm23c  cot 23c —f r

The most general case solved by Mr. Lowry, in the Repo-
sitory, is that in which e = d ; that is, where any two of the
three co-efficients d, e, f are equal. Then the preceding equa-
tion, when the values of §, @ are written in it for this case,

becomes .

b+2cot3B cot?2a—d
cot2§n—-d'a+2cot:}A_Y’

and presents a very simple solution, for we maytake B =+ 4,
and it gives

b+2cot 3a _Bo—ar,
aFZetma=l  OF cotI=iays
so that
Yo 4Fa(rF1)
z (6 —ar)? —4d(y ¥1)*’
z _ ¢+ 2 cot 3¢
v 1T eotigo—s

Hence we may take
z=t}(b—ay)? —4d(y ¥1)%},
y=4t(>Fa)(y¥ 1) .
z=4t(bFa)y 7 1)r.

Example 1. Leta=b=c=—1,d=e=f=1. The
lower signs must be used, and cot 4c must be taken either
>1, orbetween 3 and — 1. If cot §c = 4,¢ = —22%; then

z=117, y =165, z="7,
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Example2. Leta =b=c=1,d=e¢= f= —1.
‘The lower signs must be used, and we must have cot ¢ > —1.
Ifcot 3¢ = 1,and ¢ = 4; then

z ="101, y = 80, z = 120,

Prosrem XXVII. Find four numbers such that the sum
of every two of them may be a square ; the difference of every
two of them, increased by a square which is to be found, may
be a square ; and the sum of all the four numbers, diminished
by the aforesaid square, may be a square numbgr.

Baker, Gents. Diary, Quest. 1360.

Solution. 1fs* is the square to be found, the equations are

v+ x=at, v—z+ 2 =g7,
v+ y=2>7, v—-y+;"=lz’.
v 4 z=c? v— 2z 4 s =12,
z 4+ y=4d3, z—y + 3 =42,
z 4+ z=e2, z—2z4 82 =12,
y+z=f'  y—z+=m

v+ x4 y4 z2—s =al,
The values of v, z, ¥, z, will be, as in Prob. VIL,,
20 =a? 45 — 42, 22z = @* —b* 4 d*
2y =—a+b* + do, 22 =c¢? 4+ f1—0b3;
and the equations, after v, z, 9, z are eliminated, are
a4+ f? =02 4 e? =3 +d’=;t’+a’,
a? 4+ g* =0% 4+ A® =c* + 12,
a® + 8 =5% 4 k3 mmc? 4 13,
&3 4 =n* 4 g3, b At =m? X .
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A general solution of these equations appears to be unat-
tainable. The particular case discussed in the Diary, is that
in which the square s2? is assumed equal to one of the six
squares, @2,52,¢2. . . . . . Thus,if

s=fthenk=c,t=bk=el=dn=a;
and the eliminated equations are
G HfI=8 42 =3,
. a? 4 g2 =53 4 3,
a® +m* =204 d*.

Take, to solve the first three equations, by Prob. IIL,,

b =csin A 4 d cos a, e = c cos A — d sin 4,
@ =csin B + d cos B, JS = ccos B— dsin B,
a=csinc + bcosc, g =ccosc—bsinc.

By eliminating @ and & between the first column of these
equations, we find

€ COSB— COS A COSC
d sinc —sinB 4 sinA cos ¢’

so that we may take 9
¢ =t (cos B — cos A €08 G),
d=t(sinc—sinB 4 sinacosc), * -
a = tfcos B sin ¢ + cos ¢ sin (oA —B)},
b = t{cos A sin ¢ + sin (A — B)}.

Substitute these in the fourth equation,

m? = b 4+ d* —a?,
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-ordering the terms according to the functions of ¢; then
m*=48{w*cos’ c+»sin’jc+ (p cos’jc+-¢sin*jc)sinc4rsin}o},
where we have put '
a=13(x+n), B=1%(—n)
4 = cos e s8in f§, ¥ = sin « cos §,
2 =sinf (cose—sin e sin 28), g =—cos f (sin a—cos «sin2p),

4r = cos? (@ 4 f) + sin 228 —sin 2 asin 2.
Then by Prob. XIII., Case 1,

m == 2t (u cos 23c £ »sin 2§c +2L”sin c),

I tanda =— sin f cos 2« -

cos &
sin 8 sin 3a
II. tanla =—
3 cose cosficos2ax’
. q .
-or, m == 2t (ucos2ic £ »sin2}c & 5 sin ¢),
1L cot ka —=— S8 Fco82e
° 2 sine
cos B cos 3a

o IV. cotia - - .
< sin & sin § cos 2

By using the solution (I), we shall find, by putting

t = tl(i%:% -+ sin # cos 22¢),
-a =t'}cosfsin 22a — sin f cos 2(sin 2« 4 sin28 cos 2¢)},
b =1t{cosfsin22a + sin § cos 2u(sin 2a 4 sin 26 cos 2a)},
<=1 cos e(sin 2« + sin 28 cos 22c),

d =t gin a(sin 2¢ — sin 28 cos ? 2«).
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. These values, although very simple, are yet too complicated
to enable us to determine, generally, the limits within which-
o and § must be taken, so as to produce positive numbers ; but
if we take « = ¢ (2), we shall easily find that sin 28 must be
within the limits of 1 and ,9 nearly. Thus, for any given
value of @, the limits for  may be ascertained.

54,293

Example. 1If ¢ = ¢(2), 8= 9(]),t' = —56

; We get
a = 122823, b= 179017, ¢ = 98919, d = 111998;

» = 4392811807, z= 10692677522,
y = 1850874482, z= 5392156754

The general value of m?2, in this solution, is not a sym-
metrical function of A, B, ¢; so that, by ordering this square
according to the functions of A, or of B, instead of those of
¢, we should obtain eight new and independent formulas for
the question. Among these we may notice

€OS C —COS A
sin A 4 cosAsinc’

V. tan s =sinc +

CcosC -+ cos A
sin A — cosA sin ¢’ .

VI.cot}B=sinc+
anad i

=]
. s oNa g
VIL tan } (90°—a) (sin c4-cos c—.sm B)2— cos };sln ccos c’
asa COS B COS C—8inB co8 B cos ¢(sin c+cos ©)

(sin c—cos c—sin B)2 4 cos? Bsin ¢ cosc

VIIL cot 3(90°—a)= - - .
€08 B Co8 C—8in B cos B cos ¢(sin c—cosc)
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Prosrem XXVIII. To find five numbers such that the
sum of every three of them is a square number.

Solution. The equations representing the question are

v+ w4 ze=al, v4y+2z=,3,

v+ w+ y=252, wtz+y=g2
v 4+ w4 z=c3 w+t x4 2=~hR3,
v+ 2z 4 y=4ds, w4 y+4 2z =13,

v+ 2+ 2z=¢? z4+y+ z=k2
The values of v, 2, &c., in these equations are
3v = a2+ 5% +d? —2g2, 3z=a?—2b% {d2?4g3,
3w = a? + b2 —2d2 4+ g?, 3y = — 2a?+b24d?4g2,
3z = —2a2 4 c2 + e2 4 A3;
and the equations, after v, w, &c. are eliminated, are
a? + f3 =024 ¢ =c? 4+ d3,
@ i = B4R =gl
ka=g2 4 f2 33,

The four first of these are solved by taking

b =asin A — fcos a, e = acos A 4 fsin a,
¢ = asinB—fcos B, d = a cos B + fsin B,
b = asinc—1¢ cos ¢, = a cos ¢ - ¢sin C,

¢ = asin D —¢Co8 D, = a coa D 4 tsinD.
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The equal values of 4 and ¢ give
a (sin A— sin ¢) = fcos A—1¢ cos C,
a(sin B —s8inp) = fcos B—13 Co8 D;
and, eliminating a,

J sinBcos ¢ —gin A cos D + sin (c — D)
i cos B sin C — cos A sin p — sin (A —B)’

8o that we may take
i =t {cos A sin D—cos Bsinc + sin (A—B)},
J =1t {sinacosp —sin B cos c — sin (¢ — D)},
a =1 {cos A cosD— c0S B Co8 C},
b =t {cosa sin (c — D) — cos ¢ 8in (A —B)},
¢-:=t{cosnsin (c — D) — cos p 8in (A — B)},
d= t'{—cosc—sinn sin (¢ — p) + cos D cos (A —B)},
e=t{ cosDp—sina sin(c—D)—cosc cos (A—B)},
& =1t{ cosa—cosBcos(c—D) - sinDpsin(a—B)},
h =t §{—cos B+ cosa cos(c—D) -+ sin csin (o —=)}.

Substituting the values of g, £, b in the fifth equation, and
arranging the results according to the functions of a, it be-
comes

K=2{ucos’}a+ »*sin*}a+ (pcos’}a+ gsin*}a)sinat-rsintal,
6
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in which,
# = 1—sin B 8in D — cos B cos (¢ — D),
v = 1—sin Bsin b 4 cos B cos (c — D),
» = 2u cos B sin b + 25 (cos B cos ¢ — cos ),
g = — 27 cos BsinD — 25 (cos B €08 C + C08 D),
7 = 2sin B sin D—28in?Bsin 3D — cos 2B cos 3¢ 4 3,
& = sin B cos ¢ + sin (¢ — p).

Then, by Prob. XIII., Case 1, we may have
k=t(ucos23a 4 vsin3ga +-2% sin a),

4ru? 4+ (u—>)2u3—p? (0SB COSC—COS D)3 —u'
Ltanja= w Hu—) 2 —p =( ) ”S

2u(pr — qu) 24 cos B sin D
or k=t(ncos?}a+vsin?n + Lsina),
' 2 —_—)2y2 2 2__ o
II. cot:}A=4n +u—)r2—g* ¥ (COSBcosc+cosn).

2v(qu—pr) 2v cos BsinD

To complete this solution it would be necessary to deter-
mine the limits within which the angles B, ¢, p may be as-
sumed, so that the resulting values of v, w, z, &c., may
be positive numbers; but the complexity of the formulas
do not encourage the attempt, and the object seems unworthy
of the effort, which is one of mere labor. The following ex-
amples are taken at hazard.

Example 1. I ¢ = ¢(3), p = 180°—c, B=¢(]), then
(IL) gives cot o =%; and taking ¢=13%.25.17. 29, we have
for the roots of the squares, which may all be taken positive,

am=9560, b=470, ¢ = 670, d =674, e=826,
S= 2, £=685, h=835 i=125, k=AM,
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and for the numbers
v=213075}, w=228024}, = =461400},
=—220199%, 2="7800%};
which may be multiplied by 9 to i)l'oduce integers.

Example 2. If ¢ = ¢(3), p=180° —c, B=¢ (3), then (IL)

25.13.10
—142, we find

gives cot o =— % ; and taking ¢ =
a= 350, &=810, = 1230, d=2042, e=2242,
f=2358, g=485, h=1045, i=1275, k=2267;
and the numbers are
v=1492638, w=—2441001, = =1071763,
¥ =1605363, z=2462163.

From these two examples, it is probable that, ¢ and o re-
maining the same, positive sets of numbers would result for
some values of B between ¢ (3) and ¢ ().

Cor. The squares a2, 42, c2....%?, having the relations
established in the preceding solution, if we take

20=—a? 452 4 ¢2, 2w=0a2—0b% +¢3, 2x=a? 4 b2 —03,
2y=—a?+4d? 4+ 2, 2z=—a? 4 g% +A%;
we should have, by substituting these relations,
v4 w=0c3, v 4 2z =13, w4 z=h3,
24 z =53, w4 z = a?, z4 y=d?3,
v+y=/2 wty=e, z+z=4g%
y+z=4%,



64

that is, the sum of every two of the numbers v, v, z, y,
would be a square number, and they would answer the ques-
tion proposed by Mr. Baker, in the Gentleman’s Diary for
1838: “ To find five numbers, the sum of every two of which
is a square number.”

Example. By taking g, b,¢, . . ..% as in the first example,
we shall have

v=-—116350, w= 565250, = 337250,
y = 117026, z=2131975.

ProsLem XXIX. To find # numbers such that, if the
square of each of them be subtracted from the square of
their sum, the several remainders may be rational squares.

Solution. If z, y, z, &c. be the » numbers, and s their sum,
the equauons which represent the questxon may evidently be
gut in the form

(z+y+o+ &c.)?=s2=a2+22=b24y3=c?+22=&c. ,

which correspond to the General Case of Prob. X. when
r=2; that is, we may take

2Z =8 COS5 A, Y =8 Co8 B, z = scosc, &c.,
and the final equation (), of Prob. X. will be

Tcosa=1.
Now take

B=A—§, cC=A—y, »p = A—0, &c.,
and this equation becomes
‘cosA(l 4+ Zcosf)+sinaTsinf=1. . (a).

First. Let n be an odd number, so that the number of
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angles f, y, 4, &c. will be even. Then if these angles be
taken in supplementary pairs ; that is, if

B+ y=0+4 e=&c. =180°; -
we shall have
Tcosf=0,

and equation (a) will give
tan 3a = Zsin f.

‘Case 1. Let n = 3, then the number of angles §, 7, &c. is
two, and since y = 180°— 8,

tan A = 2sin 8.
Then we may have
s =1¢(1+ 4sin 28),
z=scosA=1¢(1—4sin2B), 4
y=2scos(a—B) =1t {4sin?f 4 cos f(1 — 4sin3f)},
Z=-—scos(a+f)=1t{4sin 2ﬂ—(:osﬂ(1—4sin 28) ;.

in which, to make the numbers positive, it is necessary to
have '

cot 38 > 38,732 < 5,568.
Example. If §=¢(5) and ¢=133, we have
z =897, y=2128, z =472,

This case was proposed by Mr. William Wright in the
Mathematical Companion, No. 28,~Quest. 20.

Case 2. Let n=5; the number of angles will be four, and
we must have :
" y=180°—p, &=180°—10;

tanja=2sin f 4 2sind=u;
6.
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80 that we may take
s=1¢t(1+4 w3),
z=scosAa=1¢(1 -—.u"',),
y=scos(a—PB)=1t§{2usinf 4 cos f(1 —wu3?)},
z=-—2cos (A + B) =t {2usin f—cos f(1 —u3)},’
w=2sco8 (A—0J)=¢§2usind + cos §(1 —u3)},
=—scos(A+ 0)=¢ §2usind — cos J(1 —u2)};
where the angles $, § must be so assumed that weay have
w< 1> §ootd(l—uwl) |
¢ being the less one of the two angles.
Example If =9 (7), d=9¢(9), t="10253, we have

z=2100225, ,y=604486616, = 600454184,
w = 474369000, v = 470271000.

Second. Let n be an even number, so that the numberZof
angles 8, 7, 9, &c. will be odd.

Let A', 8/, ¢/, &c. be an odd number of angles, found as in
the preceding part of the solution, such that

ZcosA'=1,
Then take

B+a'=7+5 =0+ =&e=90°;
then will hd

Zeinf=3cosa'=1,
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and equation (a) becomes
cosa (14+Zsina’) 4 sina=1.
tan § (90°—a) = 14 = sin 4/,

2 4 Zsina’

COt 3A = — -
3 Zsin A’

The analytical solution of the question is thus completely
effected.

C’a.se 3. Letn=4, and the number of angles A/, B', ¢’ will
be three ; then by Case 1, we have for these angles

cos &’ _1—4sin2g
8 T 14 4sin3f
sin A’ = 4sin B
A = T dsm g
2 — 3
cosn,_4sm 8 +cosB(1—4sin ‘3)
14 4sin2f
o 2sm2ﬂ—smﬂ(l—4smzﬁ)
s B = 1+4sm3f9
_,  4sin?8—cosf(1 — 4sin ’ﬂ)
cosc = 1+ 4sin28
. —2sm2ﬂ-—-smﬂ(l—4sm’ﬂ)
sme = 14 45sin38
ZcosA =], Zsina’' =2sinf, .
14 sinf
cot A —emp "
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Then if we take
s=2¢(1 4 2sinf + 2sin?B)(1 + 4 sin28);
z2=scos8A =t(1 4 2sin B)(1 + 4sin?p),
y=ssin(a4A")=2¢sin f(1 + 2 sin f)(1 + sinf 4 2sin 28),
2z = ss8in (A4B")= ¢ sin f{2 cos B (14 2sinB)(1+ sin B + 2sin?p)
—1—2sinf —4sin 24},
w=2¢sin (A4c')=¢ sin f{—2 cos f(142sinf)(14sinf 4 2sin2p)
—1—2sinf —4sin 26};

which numbers answer the conditions analytically, but one of
them, at least, must be numerically negative.

Example. Let §=¢(3), £=5°; we shall have
2=16775, y=19140, z=8487, w=— 22137, s=22265,
which satisfy the equations

$2=a?422 =024 y? =c? {22 =d2? {02,

Having found one set of angles, a, B, ¢, &c. making

Zcosa=1,

another set, A’, B/, ¢/, &c. may easily be deduced from them,"
having the same property; for if we put A' =a—g¢,
B=B—¢, ¢'=c—¢, &c.; then

S cosA'=cos 9= cosA-}sing = sin A
e=cosp+}sing ZsinB=1;
L )

tan 3¢ == = sin A.

Probably positive numbers might be obtained from this pro-
cess, but they would be too large to calculate to advantagg.
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: ProBLEM XXX, To find n square numbers such'that the
sum of every » —1 of them may be square numbers.

‘Solution. The question is obviously represented by the
equations

224+ y?+ 22+ &c.=a? + 22 =02 4 y? =mc? 4 2? = &,
which are those of Problem IX. Then we may take
Yy=asinA— 2 CcosA,

T =asin B — 2 COS B,

&e.
and equation (a) éf that Problem becomes
y? 4 22 4 &c. = a?,
or, by substitution,
233 cos 24 — a23 sin 24 = a?(1 — Zsin 2a).
Now put
23 cos 2A — a3 sin 22 = + ka, . (@)

then we shall have, there being » — 1 of the angles 4, B, &c.,
4%2 = 43 cos 2A— 43 cos 2A. 2 sin 24 4 (Zsin 24)2
=23(14-c0s2a) —Z(1+ cos 24) . Z(1—cos 24)+(Zsin 24)}
=2(n—1)—(n— 1)34 23 cos 24+(= cos 24)2 (= sin 24)?
=3(n—1)—(n—1)2 423 cos 24 + 2= cos 2(A—B) ; . ()
2kde= }(n— 1)(4 —n)+ Zcos 24 + 2 cos 2(o—B),

k2 =%,2 4 sin A cos AZ sin 2B — (1 4 = cos 28B) sin 24 ;
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in which

2k,2 =3(n—1)(4—n) 4+ 14 2 Zcos 2B + Zcos2(B—c),
k32 = k42 -} sin B cos B 2 sin 2¢ — (2 + = cos 2¢) sin ?B;°

in which

2k,2 = 3(n—1)(4 —n) + 3 4 3 = cos 2c 4 = cos 2(c — »p),
k,2 =k42 4 sinc cosc =sin 20 — (3 4 = cos 2p) sin 2c;

in which

2k32 =3(n—1)(4—n)+ 644 = cos 2p + = cos 2(D — E),
k3?2 =%k,2 4 sinpcosp Zsin 2E — (4 4 = cos 2E) sin 2p;

&ec. &ec.

It is understood that X sin 2B represents the sum of the
sines of all the double angles, except A; = sin 2c, the sum
of the sines of all the double angles, except A and B; &ec. &c.
In general, it is evident, from the law of continuity of these
equations, that

2k?=3(n—1)(4—n)+3i(i+41)+(¢+ 1) cos 2L + = cos 2(L—n),

and there would be left » —¢{—1 of the angles L, m, &c.; sa
that, when

t=n—3,

there would only be two of them, say v and z, left. Thus, for
this equation, we have '

2k,_y’=3}(n—1)(4—n)+3(n—3)(n—2)+(n—2)(cos 2¥-}-cos2z)
+ cos 2(y —z)
=14 (n—2)(cos 2¥ + cos 2z) 4 cos 2(¥x — z),

Ky = cO8 3(Y—12) 4 (n— 2) cos (¥ + z) cos (¥ — z).
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A simple solution of this equation is
Y 4 z.=90°,
Fon_g = cos (Y — z) == sin 2v.

The preceding equations all belong to the form of Prob-
lem XIII., Case 5, and therefore we may put

= sin 2B

b=k ——

.8ina,

= sin 2¢
2%,

&ec. - &e.

ky=Fky, — sin B,

3 'sin 2v
Koy =k""—-32—k— .8inx
n—3

=gin 2Y —sin X
then we shall have

1+4Zcos 28 , = sin 2B

cot A =——— e

e

wion SRR,
&e.

cotix = 2_”si—T22;;

which completely resolves the Problem.
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Case 1. Let n = 3, and there are two angles Aand B; the
equations become

A4 B =90°
k=sin2a;
Zcos?a=1,
and equation (a) becomes
2z = 2asin 24,

so that the solution is precisely that given for this particular
case in Problem XXIIL.

Case 2. Letn = 4; there are three angles, a, B, ¢; and
the equations are

B 4 ¢ = 90°,.
1
cot %A = m,

. . sin 2B cos 228
k =s8in2B—sina = ;

1+ sin228 '
and equation (z) becomes
i-—sin213 or = 2 sin 28
a ! T 1 4 sin 428

But the first of these values makes y = z; and taking the
second, and making

a =1¢(1+ sin 428),
we get for the numbers
2z == 2¢8in 28, 2 =1¢sin B cos 28(4 cos B — cos 32B),

y==2¢5in 328, % == ¢ co8 B cos 2B(4 sin 28 - cos 32B).
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Example. If B=¢(2), £=5%; the numbers are

3750000, 3456000, 639604, 832797.

But, in this particular case, equation () takes a form suscep-
tible of particular reductions; thus

2%3 =3 cos 24 + = cos 2(Ao —B),
k?=cos(a+}B—c)cos(A—B+c)+ cos(A-}B—C)cos(—a+-B+-c)
+ cos(A—B--c)cos(—A+B+-c).
Then if we take
A4+B—c=90°, or c=a+4B—90°;
k* =sin2asin2, . . . (9

which, like the final equation of Problem XXIII., to which
it is analogous, admits of many solutions.

~

1st. By dividing it by 4 cos 438, it becomes
3%2? sec 3B =sin2a tan 38 (1 — tanl’:}n) H
so that if we take
tan 3B = sin 2a;
3% sec 23B == sin 24 cos 2a,

sin 4A
14sin22a’

and equation (a) becomes

z _ sin24(1—2cos 24+-sin 224)
a  1+4sin32a42cos2a8in32a
1
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Then we may take

a =t (1 4 sin 22a 4 2 cos 24 sin 221),

2z =t sin 2A (1 — 2 cos 24 + sin *2a),

y =tsinacos2a (14 2cos 24 + sin 224),
z =1¢sin 24 (1 4+ 2 cos 2A + sin 224),
w=1¢ cos A cos 24 (1 — 2 cos 24 +- sin 324).

Example. If A =¢(2), ¢=57; the numbers are
186120, 23828, 102120, 32571.

2d. By dividing equation (c) by 16 cos ¢3A cos 43, it
gives

tok2sec‘3asect}n =tangatan }B(1 —tan23a)(1 — tan 2}B).
In this equation, put
tandB=1—tana;

then it becomes
Pok3sectasect3B=tan?3a(1—tanda)? X(14tanga)(2—tanga).
Now, let

1 4 tan 3o = m cot 6, 2 —tan §A =m tan 36,
so that A

15%% sec A sec 3B =tan 34A (1 —tan §a)2 Xm? ;
then we shall find

3 =m (cot 30 + tan }6), or m==3%sin0;
tan 3A = 3(1 4 3 cos 6), tan3B = }(1—3cosb);

4o 24800 0(1—9 cos 20)
(6 + 9 cos 26)? — 36 cos 26°
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By substituting in equation (a), we obtain, after some re-
duction

a . 324 24sin*0cos?0—3sin*0F 4sin6(7 49 cos’a)
=& (L—9 cos 20) (4 F 3sinb)

so that we may take

a =3t {32424 8in 20 cos 20—3sin 40 F 48in 6 (7 4+ 9 cos 26)},
2z =4t(1— 9 cos 26)(4 ¥ 3sin0),

Yy =12¢(1 4 3 cosf){4sin 336+ 3sin 20 F sin 6 (56 —3 cos §)},
@ = 12¢(1—3 cos 6){4 cos236+4-3sin 20 ¥ sin 6 (5 4 3 cos 6)},
20 =3¢8in 6 (1 — 9 cos 26)(3sin 0 F 4).

Example. Let 0= ¢ (2), and ¢ = 22,

per sigus are used, we obtain the numbers

then, when the up-

z=280, y=105, =60, w=168;
and when the lower signs, the numbers
z2=1120, y=23465, z=1980, w=672.
3d. The equation
I%k’ sec*3asec 3B =tanjA tan §B(1—tan23a)(1 —tan33s),
may be solved by putting

tan §A (1 —tan 23a) =tan B (1 — tan 2}8),

or, tan 23A 4 tan §atan 4B + tan 28 =1,
Then, by Prob. IV., Ex. 1, we have
_ 2%cos 6 _ 2sin 6 4-2sin 240
tan §a = ST em0 tan 3B = 21 sin 0 H
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from which a solution similar to the preceding one may be
obtained.

I believe that this case was first proposed and solved by
Dr. O'Riordon, in No. 12 of the Matkematical Companion.

Case 3. Let n=>5; there are four angles, 4, B, c, D, and
the equations for determining them are

p=90° —c,

cot 3B = k, =sin 2c — sin B,

3
2 sin 2¢’
142cos2s  Zsin2s 2sin33 sin28+42sin2

cotga= Zein2s | 4k,? sin2st2sin2c ' Ak, 2’

3 si . in 2 2 8in 2 .
k=ky — s;‘nl2n._smA=kl_MTjaﬂ,,m‘,

The smallest numbers resulting from these formulas are,
however, so very large as to discourage any attempt to cal-
culate them. The roots of the squares, for instance, found
by taking c= ¢ (2), will probably not have fewer than thirty
figures, and they may have more than sixty figures. Since
an analytical solution has thus been obtained, modified forms,
as in the preceding case, may possibly be met with, which
shall contain less numerical results.
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CHAPTER 1II.

APPLICATION TO GEOMETRY.

Treorem I. If the radius of the circle which circum-
scribes a planeé triangle, and the trigonometrical functions of
the angles of the triangle are expressed in rational numbers ;
then the sides of the triangle, its area, the perpendiculars on
the sides from the opposite angles, and the segments into
which these perpehdiculars divide the sides, will all be ex-
. pressed in rational numbers.

Demonstration. Let aABc be the triangle,
o the centre of the circumscribing circle ;
Rits radius; @, b, ¢ the three sides, opposite
. theanglesa, B,c; and s its area.

Then the angle a0B, at the centre = 2c,
and the isosceles triangle AoB gives

¢ =2rsinc;
similarly b = 2r sin B,
a = 2R8inA;
which may all be included in the form
2 = .b = =28
sina sinB sinc
*
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Again
s = 4abd sinc = 2m? sin A sin Bsinc,
cP = bsinA =2r sinaAsinB;
- that is
cP sin 0 = Ba sin B = ARsin A = 2R sin A sin Bsinc.
Also AP == 2R 8in B 08 A, BP = 2R 8in A COS B,

and so for the other segments. Thus the truth of the theorem
is established.

Example. By Chap. L, Problem IIL, Cor. 1; we may take
A=9(2) p=0o@). c=9();
and if 2r = &F, the sides are '
a=13, =15, c=14;
the perpendiculars
cp =12, Bq = 11}, AR = 12}3;
and the segments .
AP=9, aq=8j, BR¥5{3;
and, if these numbers be multiplied by 65, they will be inte-

gers.

Taeorem II. If the radius of the circle which circumscribes
a plane triangle, and the trigonometrical functions of the Aalf
angles of the triangles are expressed in rational numbers;
then the radii of the four circles touching the sides, the lines
drawn from the angles to the centres of these circles, the lines
bisecting the angles and terminating in the opposite sides,
and the segments of the sides into which these lines divide
the sides, will all be expressed in rational numbers.
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Demonstration. Let
o be the centre of the inscribed circle,

7 == OH, its radius,

o' the centre of the circle touching ¢
externally.

7, = 0'1, its radius, .
oH, 0’1 perpendiculars to As.
Since A0, Bo bisect the angles A, B, we have

AH =7 cot §A, BH =7 cot §B;
by addition
c¢=2r sin c =7 (cot 3a + cot }B)

, sin 3(A 4 n)

* sin 34 sin 3B

- cos 3c
* sin 3A sin §B’
7 = 4R sin §A sin 38 sin }c.
Since B0’ bisects the angle ¢B1, we have
Al=17, cot 34, BI =7, tan %n;
by subtraction

¢ =2msinc =7, (cot A — tan }B)

cos #(A + B)

sin 44 cos 4B

“sin ic
* sin 34 cos 48’

7.= 4R sin }A cos e con e,
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Similarly, if r, be the radius of the circle touching the three
sides, b externally; and 7, the radius of the circle touching
the three sides, c externally ; we should have

r.cot $A =7, cot 3B =7, cot §c = 4R cos 3A cos B cos §c.
For the lines a0, Bo, &c., we have .
A0 =17 cosec 3o = 4Rsin 3B sin c,
BO =71 cosec 3B = 4Rrsin 34 sin }c,
co = r cosec §C = 4R sin A sin 1B;
A0’ =7, cosec §A = 4R cosib cos 1c,
BO' =7, sec3B = 4rsin}acosic,
co’ =7, sec3c = 4Rrsin}acos}s,

&ec. &ec.

For the lines bisecting the angles,

AD _ sinB _ sinB
¢ sin(3a+B) cos(B—c)
or AD cos 3(B—c) =2rsinBsinc;
80 BE cos §(A —c) =2rsin Asinc,

CF cos 3(A — B) = 2R 8in A sin B.

For the segments of the sides,

AF _ sin 3¢ sinjc

b sin(a+ 3c) cosj(a—s)
or AF cos 3(A—B)=2rsinB sin §c;
8o BD cos §(B—c) = 2R sin c 8in §4,

CE cos $(A —c) =2rsin Asin §B;

which renders the truth of the theorem manifest.
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" Example. By Chap. L., Prob. IIIL, Cor. 2, we may take
I1r=9(3) Ip=9(5) Ic=9(¥);
sinfja= 3, cosja= 4, sina= 4}, cosa= J ;
sinis=,;, cosis=14, sins =133, cosm= {i};
sinjc’'=33, cosjc=3§, sinc=3§3%, cosc=42%4L;
and taking 2r = 432%, we shall have
a =169, b: 125, ¢ =154;
r=41%, r,=168, r,=93%, r =140;
A0 = 68%, Bo = 107i, co = 8l%;
Ao/ =280, =o' = 182, 00'=195 ;
&ec.
Ap =110313, BE = 148844, ocF =123}];
Ar = 655%, BD =93;%%, oE= 65}33.

To make these all integers it would be necessary to multiply
them by 162792. ’

Tarorem III. If the radius of the circle which circum-
scribes a plane polygon of any number of sides, and the tri-
gonometrical functions of the half angles which subtend the
sides at the centre of this circle, are all expressed in rational
numbers; then the sides and diagonals of this polygon, its
area, and the areas of the triangles into which the diagonals
divide the polygon, are all expressed in rational numbers.
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Demonstration. Let r be the radius
of the circle, o its centre, and ABcD....
a polygon of x sides inscribed within it;
let also angle A0B =24,

BOC = 2B,

cop =20,
&ec.

s0 that 24 4 2B 4 2¢ 4 &ec. = 360°,
A4 B4 ¢4 &c.= 180°
Then it is plain from Theorem I., that we have
AB = 2R 8in A, |
BC = 2R 8in B,

CcD = 2R 8in C,

&ec.
Ac = 2r sin (A + B),
AD = 2& sin (A + B + ©),
BD = 28 sin (B 4 c),

BE == 2r sin (B 4 ¢ + p),
&ec.

For the area of the Polygon, we shall have

P = 282 (sin 24 - 8in 28 + sin 2¢ + &c.);
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and for the triangles into which the diagonals divide it
ABC = 2R?{sin 24 4 sin 2B — sin 2(A + B)}
= 8r?sin 4 sin B sin (A 4 B),
Acp = 2r?{sin 2(A + B) 4 sin 20 — 8in 2(A 4+ B 4 ¢)}

= 8r?sin (A + n;sin csin(a 4 B +¢c),
’ &e. ;

which proves the truth of the Theorem.

Example 1. For the Quadrilateral, we may take
A=9@), B=9(5) c=9();
Ate=9¢(]) Btc=9(H);

Atrdo=p(d), =180°—o()=o(¥)-

Then we shall find

AB=2R. ¥, Bc=2R.y%, cnaén. 4.,

Ap=2r.}{13; Ac=2r.§§, BD=2R.}}{
Taking the diameter 2r = 845, we have for the sides

507, 325, 819, 595;
for the two diagonals
728, 836;

and for the areas

p==1123584, ABC==283920, BCD = 526680.
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Example 2. For the Pentagon, we may take
A=9(3), B=9(5) c=0(}), p=9(8);
at+B=9(}) Btc=9(3}) c+p=9(4);

‘A4+Btc=9@3), Btc+r=9F)

A+B+c+p=9(}) n=180°—q)(1}-‘,5:)=4p({—§).
Then we shall find
AB=2R.3§, BC=2R.{5, cp=2R.$§§,
pE=2r. 1}, EA=2R. }}34;
Ac=2r.3%, AD=2r.383%, BD = 2R. 831,
BE =2r. 333, CE =2R.3$.
Taking the diameter 2r = 21125, we have for the sides
12675, 8125, 18200, 5200, 15392;

and for the diagonals

18200, 18480, 20925, 20995, 20280;

the areas, which will be expressed in whole numbers, may

easily be calculated.

Cor. 1t is obvious enou'gh, although it has not been judged

necessary to include it in the body of the theorem, that in the
hypothesis of the theorem, the segments into which the dia-
gonals divide each other will also be expressed in rational
numbers :—for th® angles made by any pair of them will be
expressed by the sums or differences of two or more of the

angles 4, B, o, &c.

3
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Taeorem IV. If the radius of the circle which circum-
scribes a plane polygon of any number of sides, and the tri-
gonometrical functions of one-fourth of the angles which
subtend the sides at the centre of this circle, are all ex-
pressed in rational numbers; then the radii of the circles
which touch any three of the sides and diagonals of this
polygon, the lines joining the angular points of the polygon
with the centres of these circles, the lines bisecting the
angles made by any pair of the sides and diagonals of the
polygon, and terminating in any other side or diagonal,
&c., &c., will be expressed in rational numbers.

The truth of this Theorem is sufﬁcienﬂ)" obvious from the
Demonstration of the two preceding ones.

ProsrLEm I. To find parallelograms whose sides, diagonals,

and area, are integers. .
Lenhart, Math. Miscellany, Quest. 119.

Solution. Let a, b be the two adjacent sides of the paral-
lelogram ; A the angle included between them; ¢, d its two
diagonals; and P its area. Then

a? 4 b2 —2ab cos A =¢3,
a? 4 52 4 2ab cos A = d?,
P =absina.
By adding and subtracting the two first, we have
242 4 2b2 = c? 4 d3,
4adcos A =d? — (2,

The first of these equations is solved, as we have seen, by
taking
¢ ¢ = (a + 3) cos B + (a — b) sin B,

d = (a + b) sin B— (a —1D) cos B;
8
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and these substituted in the second, give
2ab cos A = (52 — a3) sin 2B — 2ab cos 28.

Now put —:i = cot §o, that is

2ab 33 —q?
sin 0 cos C

then this equation becomes
sin c cos A = sin (2B—C) ;

thence we have

sin ¢ cos 234 =sin B cos (0 —B),
sin ¢ sin 2§A = cos B 8in (¢ — B),
sin 3¢ sin 2A = sin 2B 8in 2(c —B) ;

which is the same as equation (c) of Problem XXX,
Chapter II. If we take, as in the second solution of that
equation, '

tan 3B =%(L 4 3 cosd), tang(c —B)=4(1 —3cosl);

we get

and therefore we may take
a =4, 5=3t(1 4 3cos206).
Then we shall find
¢ =¢(3co80—1)(5 + 3 cos ), d=¢(3cos 6+ 1)(5 — 3 cosf);

P =gbsin A=}(a? 4 52)sin csin A = 12¢2 gin §(9cos 26 —1).
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Example. Let 0 =¢(2), t= %}; we have

a = 25, b=239; N
¢ = 34, d=56;
p = 840.

The above equation has also the obvious solutions
c = 28, A=90°;

when the parallelogram is rectangular; and
c=90° A =28B;

when it is equilateral.

ProBrLEM II. To find the sides of right angled triangles,
in rational numbers, which have equal areas.

Solution. Let k, &' be the hypothenuses of two right angled
triangles ; A, B their acute angles; then

a =% sina, b =% cosa;
a = %'sin B, b =% cosB;

are the legs of these triangles; and, when their areas are
equal, we must have ’

442 sin 24 = }%'? sin 28,

h* _ sin28
%7 sin2a’

an equation, the solution of which is evidently dependent on
that of equation (¢) Prob. XXX., Chap. II.
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If we take, as in the first solution of that equation,

tan 4B =sin 24;
we shall find
14 sin 224 A% 4 44252

h! = = K
B =h 2 cos 24  2k(62—a?)
2ab. )
a'=h tan 2a = —bz‘—i’;_ﬂ_' + * {a)
32 — g2
b' =3k cos 2a =_2—Ic—'

By means of these formulas, any number of triangles,
having the same area, may be deduced from each other by
successive substitution.

Example. If 2=25, a =3, b =4, we get
F=ug, a=3p, ¥

and by writing these values of %/, @, b’ instead of %, a, &, we
get another triangle having the same area, &c.

Again, in the third solution of equation (c), Prob. XXX,
this solution is made dependent on the equation

tan 23a 4 tan datan3B 4 tan 238 =1,
v;hicb may be put in the form
(2tan A + tan 3B)? 4 3tan 23B =4,
and therefore, by Prob. IV., Example 2, Chap. IL.,
2tan A 4 tan 3B =% ¢(cos 230 — 3 sin *36),

tan B =¢sin6, 2=1(cos?}04 3sin2@d;
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thence we have, by e]iminating e,

28inf tniA__—sinO;l:?coaO:r-l.
anga = 2—cosd ’

tan 35 T2 —cos 0

Ak _cos?is_14tan?a  (2—cosf)?+(1—2 cosf£sinb)*
% cos?3a” 14-tan?is = 8—4cosO—3cos3l

Then we may take
h=1t§{(2—cos6)? + (1 —2 cos 0 & sin 6)3},
hsin A = 2¢(2—cos 0)(—sin0 £ 2cos6F1),
hcosa=t§(2—cos )2 —(1—2cos0+sinb)?};:
& =1t(8—4 cos 6 —3cos20),
%' sin B = 4¢sin 6 (2 —cos 0),
¥ cosB = tcosf (5 cos 6—4).

These formulas give three triangles having equal areas, for
the same value of 4.

Example. If 6=¢(2), ¢ =25, we have

58, 42, 40;
74, 70, 24;
113, 112, 15,

for the sides of three triangles, each of whose areas is 840.
If we write these separately in the formulas (z), we shall get.

1412881 48720 41
1189 °’ 41 29’

2579761 62160 1081
39997 ’ 1081° 37’

174336961 379680 12319
2784094 °’ 12319’ 226 ’ )
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for the sides of three other triangles, the area of each of
which is also 840.

It may be mentioned, while on this subject, that a general
solution of the equation

sin 2B _
8in 2a

is yet a desideratum in this branch of Analysis ; a being either
a given number, or a number whose form is to be determined
within precise limits,



ERRATA,.

Page 52, line 6, for Y'f, read 4f.

58, end of lind 3, for +r sin 3o}, read + r sin %0}, °
¢ 62, in line 11, in second member of equation,
Jor + vsin 338 +, read + » sin ’.‘}A +.

“ 62, line 17, for do, read does.

“ 68, line 4 from foot of page,

Jor cos ¢ -} sin ¢X sin B, read cos ¢ + sin @2 sin A.

“ 73, 1st line, for 55, read 59.

« 78, line 11, from foot of page, for 8%, read 83.

“ 84, line 8, for }3§,read }§. -
























